
Networking Conway’s Game of Life: Towards a

dependency model for life and death

Jacob M. Peck
State University of New York, College at Oswego

Spring 2011

Introduction

The Game of Life, a popular cellular automaton ruleset introduced by John H. Conway in 1970, is a
decent simulation of many things including as its name hints, life [1, 2]. However, this simulation
appropriates only the effect of neighbors upon an individual. While this is accurate for the world of,
say, bacterium, human (and to a certain extent, animal) lives have a much more intertwined structure
[3]. Individuals are connected to far more than just their direct neighbors due to mobility, and to
differing extents [3]. This project attempted to bridge the gap between the stationary cells of Conway’s
Game of Life and the mobile, active individuals in the world.

Project Description

To approach this problem, I devised a way to add connections to cells, with a probability of any given
cell being a hub (and therefore having a significantly larger number of connections). These modified
cells required a modified ruleset, which I decided to keep based on Conway’s Game of Life, rather
than any of the other two dimensional cellular automata rulesets solely out of personal interest and
curiousity as to what would happen when a bit of network science was thrown into the mix.

In the end, I decided that each cell should rely on both its eight nearest neighbors and its world
reaching connections for survival. In an attempt to simplify the simulation, and also in part due to
time constraints, I decided that each cell would maintain its connections throughout the life of the
simulation, meaning that once a cell, at say position (0,3) had a connection to the cell at position
(1,16), that connection persisted throughout the entire simulation, regardless of whether the cells
are alive or dead. Also of note, connections are bi-directional, meaning that each cell involved in a
connection is aware of the state of the other cell. In another act of simplification, hubs were decided to
have up to ten connections, whereas non-hubs have at most two.

The modified ruleset I devised is as follows:

• A dead cell comes alive in the next generation if exactly 3 of its neighbors are alive in the current
generation.

• A live cell dies in the next generation if it has more than 3 live neighbors in the current generation,
as if by overpopulation.

• A live cell in the current generation with fewer than two live neighbors lives in the next generation
if at least 30% of its neighbors are alive in the current generation, otherwise it dies, as if by
isolation.

1

• All other cells remain dead in the next generation.

This allows for some interesting behavior, depending on the initial configuration parameters.
To facilitate the simulation of this process, I decided to write a program using the Processing pro-

gramming language. Processing allows for easy programmatic control of a graphics surface, allowing
for a visualization of what’s going on behind the scenes.

I broke the project down into four steps, each building upon the steps that preceeded it.

1. Model Conway’s Game of Life in it’s standard form, allowing for a random initial configuration.

2. Add per-cell statistics, such as current lifespan, longest lifespan, average lifespan, lifespan history,
and state history.

3. Add connections between cells, allowing for random distribution of hubs, while ensuring all con-
nections are bi-directional and there are no self-referential connections.

4. Add per-cell statistics on hub status as well as a list of connections. Add system-wide statitstics
on longest lives for hubs and non-hubs, as well as average lives for hubs and non-hubs.

This separation of tasks allowed me to quickly and efficiently produce a simulation that conformed to
my requirements.

In modelling Conway’s Life, I produced a simple simulator that ran Conway’s life in a torroidal
world (top cells stitched to bottom, left cells stitched to right, no cell has fewer than 8 neighbors). As
a side effect of Processing’s web-friendliness and its sister project Processing.js, I was able to port this
simulation to the web [4]. This version will run in any HTML 5 compliant web browser.

The statistics are implemented in a way such that the system will print out a large text file after a
predetermined number of generations have been run. Each cell in the text file will have an entry such
as this:

Cell at (19,16):
current lifespan: 0
longest lifespan: 22
average lifespan: 4.764045
lifespan history: [17, 21, 8, 12, 5, 1, 2, 3, 5, 2, 6, 14, 1, 10, 10, 4, 1, 8, 2, 1,

8, 2, 4, 1, 5, 4, 5, 2, 1, 1, 10, 5, 1, 1, 3, 1, 1, 17, 1, 19, 22, 1, 6, 1, 8, 4, 2, 7,
1, 6, 3, 12, 6, 9, 3, 1, 9, 1, 3, 4, 1, 9, 1, 7, 2, 1, 2, 1, 6, 7, 1, 8, 6, 2, 2, 3, 3,
3, 4, 2, 7, 1, 4, 1, 1, 1, 2, 1, 1]

memory: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 <...snip...>

The current lifespan refers to how long the cell had lived prior to statistics being collected, the longest
lifespan is the longest amount of consecutive generations the sell was alive for, the average lifespan
is the mean length of all of its lifespans, the lifespan history is a list of all the lifespans the cell went
through, and the memory is a list containing either a 1 (denoting alive) or a 0 (denoting dead) for every
single generation the system has gone through, sorted in chronological order. The above example has
been truncated, as this was taken from a statistics file from a 1,000 generation run.

The connections are simply pointers to other cells. To visualize this, a line is drawn between any
connected cells every time the system iterates. These lines are roughly color coded, so as to be unique
and distinct. However, the end results are still terribly messy.

The system-wide statistics are just an addition to the text file produced by the previous statistics.
Each cell is augmented by two additional fields, as follows:

2

Cell at (19,16):
current lifespan: 0
longest lifespan: 22
average lifespan: 4.764045
lifespan history: [17, 21, 8, 12, 5, 1, 2, 3, 5, 2, 6, 14, 1, 10, 10, 4, 1, 8, 2, 1,

8, 2, 4, 1, 5, 4, 5, 2, 1, 1, 10, 5, 1, 1, 3, 1, 1, 17, 1, 19, 22, 1, 6, 1, 8, 4, 2, 7,
1, 6, 3, 12, 6, 9, 3, 1, 9, 1, 3, 4, 1, 9, 1, 7, 2, 1, 2, 1, 6, 7, 1, 8, 6, 2, 2, 3, 3,
3, 4, 2, 7, 1, 4, 1, 1, 1, 2, 1, 1]

memory: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 <...snip...>

is hub: false
connections: (8,11) (9,19)

The is hub statistic simply reports whether the given cell is a hub or not, and the connections list is
simply the coordinates of the cells the given cell contains connections to.

The end of the statistics text file contains entries such as the following:

Average hub lifespan: 4.4231944
Average non-hub lifespan: 4.850761
Maximum hub lifespan: 72
Maximum non-hub lifespan: 80

This simply reports on the overall effectiveness of being a hub versus a non-hub.

Results

From several different runs, given different initial parameters, the statistics reported varied. Following
is a table of results, with local maxima italicized.

world size 10 x 10 10 x 10 20 x 20 30 x 30
of generations 100 100 1,000 10,000

hub density 2% 50% 20% 2%
max lifespan: hub 49 19 72 3,166

max lifespan: non-hub 70 30 80 3,271
average lifespan: hub 12.2 3.614888 4.4231944 10.033964

average lifespan: non-hub 7.788928 4.0406003 4.850761 9.810683
advantage neither non-hub non-hub neither

These results, while interesting, show no statistically relevant results at larger numbers of generations
and larger worlds, however in smaller settings within a constrained time period, a minor advantage is
shown in favor of the non-hub cells. In both cases where there is no outright advantage (both a longer
average lifespan and a longer maximum lifespan), there is a common pattern whereby a single non-hub
cell had an outstanding life, but a hub cell can expect to live longer on average.

What I Learned

In interepreting these results, I have come to a few realizations. Firstly, that a non-hub cell is favored
in several ways for these runs, it stands to reason that it could simply be that knowing more people
complicates life. By requiring 30% live connections to prevent a cell from dying by isolation, non-
hubs have an advantage, as they only need one connection alive to continue into the next generation,

3

whereas a hub needs at least three. While the burden of responsibility is lightened a bit by having more
choices, it is still a stricter requirement. In a way, this maps to actual life, as well. Though there exist
hubs, and they have a large number of connections, they have more people to keep happy and may very
well operate at a higher stress level than non-hub individuals.

It also speaks of the unity of the human species. If a well connected, socially adept hub individual has
just as much chance to make it as a non-hub individual, it shows that there’s not truly much difference
between us. The people we know and the choices we make are fundamentally similar, across borders,
genders, and races.

Outside of the network science aspects I was able to draw out of this, I also became acquainted with
the Processing programming language a bit more than I had been beforehand, and also improved my
implementation ideas of Conway’s Life. Having implemented Conway’s life three times in the year pre-
vious to this project, I had a firm foundation to start with, but this project simplified my implementation
of the torroidal aspect of the world, as well as with speed.

In future versions of this project, I would like to add more aspects to study, such as enemy con-
nections that work against a cell, aging in the form of different cell states, economics (wealth), social
status and mobility (ability to form new friend connections and prevent enemy connections), and pos-
sibly inheritance (cell offspring gaining the wealth and connections from their parents). This project
seems to have a very open future, and I hope I am able to see it through.

References

[1] Conway’s Game of Life, LifeWiki, http://www.conwaylife.com/wiki/index.php?title=Conway%
27s_Game_of_Life, Accessed 09 May 2011.

[2] Stephen Wolfram, A New Kind of Science, Wolfram Media, Inc., 2002.

[3] Duncan J. Watts, Six Degrees: The Science of a Connected Age, W. W. Norton & Company, Inc.,
2003.

[4] Jacob M. Peck, Conway’s Game of Life {2011}, suspended-chord:portfolio, http://
suspended-chord.info/portfolio/programming/conways-game-of-life-2011/, 2011.

4

Appendix - Code Listings

What follows is a listing of the code for this project as it stood at the time of writing.

Listing of NetworkedGoL.pde

1 // Hon 301 Final Project - Networked Game of Life
2 // Main
3 // Hon 301 - Vampola
4 // Jacob Peck
5
6 color live_color = 255; // white
7 color dead_color = 0; // black
8 color stroke_color = color(155); // gray, this is the color between cells
9

10
11 int cellsize = 20; // height and width (in pixels) of each cell
12 int x = 20; // system width in cells
13 int y = 20; // system height in cells
14 float density = 0.5; // percentage of live cells in the initial configuration
15 float hubdensity = 0.02; // percentage of hubs
16
17 int generationcount = 1000; // generations to run before writing statistics

(stats.txt)
18
19 CA ca;
20 int count = 0;
21
22 void setup(){
23 // do setup stuff here
24 println("starting...");
25 size(x*cellsize, y*cellsize);
26 background(dead_color);
27 stroke(stroke_color);
28 //noStroke(); // uncomment this to remove the grid
29 ca = new CA(x,y,density,hubdensity,cellsize,live_color,dead_color);
30 ca.drawCA();
31 }
32
33
34
35 void draw(){
36 // do looping stuff here
37 //delay(90); // uncomment this to add a slight delay between iterations
38 if (count < generationcount) {
39 stroke(stroke_color);
40 ca.iterate();
41 ca.drawCA();
42 count++;

5

43 } else {
44 ca.printStats(); // comment this to disable printing stats
45 exit();
46 }
47 }

Listing of Cell.pde

1 // Hon 301 Final Project - Networked Game of Life
2 // Cell class
3 // Hon 301 - Vampola
4 // Jacob Peck
5
6 class Cell {
7 private int x;
8 private int y;
9

10 private boolean state;
11 private ArrayList<Cell> neighbors;
12
13 private ArrayList<Cell> connections;
14 private boolean hub;
15
16 private int currentLifespan = 0;
17 private ArrayList<Integer> lifespanHistory;
18 private ArrayList<Boolean> memory;
19
20 // constructor
21 public Cell(int x, int y, boolean state, boolean hub) {
22 this.x = x;
23 this.y = y;
24 this.state = state;
25 this.hub = hub;
26
27 connections = new ArrayList<Cell>();
28 neighbors = new ArrayList<Cell>();
29
30 lifespanHistory = new ArrayList<Integer>();
31 memory = new ArrayList<Boolean>();
32 memory.add(state);
33
34 if (state) currentLifespan = 1;
35 }
36
37
38 // getters
39 public int getX() {
40 return x;
41 }
42

6

43 public int getY() {
44 return y;
45 }
46
47 public boolean getState() {
48 return state;
49 }
50
51 public ArrayList<Cell> getConnections() {
52 return connections;
53 }
54
55 public ArrayList<Cell> getNeighbors() {
56 return neighbors;
57 }
58
59 public int getCurrentLifespan() {
60 return currentLifespan;
61 }
62
63 public ArrayList<Integer> getLifespanHistory() {
64 return lifespanHistory;
65 }
66
67 public ArrayList<Boolean> getMemory() {
68 return memory;
69 }
70
71 public boolean isHub() {
72 return hub;
73 }
74
75 // setters
76 public void setState(boolean newState) {
77 state = newState;
78 }
79
80 public void setCurrentLifespan(int value) {
81 currentLifespan = value;
82 }
83
84 public void setHub(boolean hub) {
85 this.hub = hub;
86 }
87
88 // various functionality
89 public void addNeighbor(Cell neighbor) {
90 if (neighbors.size() >= 8 || neighbors.contains(neighbor))
91 return;

7

92 else
93 neighbors.add(neighbor);
94 }
95
96 public void addConnection(Cell connection) {
97 if (connections.contains(connection) || (connection.getX() == x &&

connection.getY() == y))
98 return;
99 else

100 connections.add(connection);
101 }
102
103 // ** not utilized **
104 public void removeConnection(Cell connection) {
105 if (connections.contains(connection))
106 connections.remove(connection);
107 }
108
109 public int getLiveNeighborCount() {
110 int count = 0;
111 for (Cell c : neighbors)
112 if (c.getPreviousState())
113 count++;
114 return count;
115 }
116
117 public int getLiveConnectionCount() {
118 int count = 0;
119 for (Cell c : connections)
120 if (c.getPreviousState())
121 count++;
122 return count;
123 }
124
125 public boolean getPreviousState() {
126 return memory.get(memory.size()-1);
127 }
128
129 private void iterate() {
130 int count = getLiveNeighborCount();
131 float connectionpercentage =

float(getLiveConnectionCount()/getConnections().size());
132 if (getState()) { // live, survives at 2 or 3 neighbors, or failing due to

underpopulation that, at least 30% live connections
133 if (count == 2 || count == 3 || (count < 2 && connectionpercentage >= 0.3)) {
134 incrementCurrentLifespan();
135 } else {
136 setState(false);
137 //setState(true);

8

138 // switch the commenting on the above two lines to enable life without death
(B3/S12345678)

139 startNewLife();
140 }
141 } else { // dead, born at 3 live neighbors
142 if (count == 3) {
143 setState(true);
144 incrementCurrentLifespan();
145 }
146 }
147 addToMemory();
148 }
149
150 // add the current state to the memory
151 public void addToMemory() {
152 memory.add(state);
153 }
154
155 // increment life counter by one
156 public void incrementCurrentLifespan() {
157 currentLifespan++;
158 }
159
160 //
161 public void startNewLife() {
162 if (currentLifespan > 0) lifespanHistory.add(currentLifespan);
163 currentLifespan = 0;
164 }
165 }

Listing of CA.pde

1 // Hon 301 Final Project - Networked Game of Life
2 // CA class
3 // Hon 301 - Vampola
4 // Jacob Peck
5
6 class CA {
7 private Cell[][] cells;
8 private int x;
9 private int y;

10 private int cellsize;
11 private color color_live;
12 private color color_dead;
13
14 // constructor, sets up the parameters
15 public CA(int x, int y, float density, float hubdensity, int cellsize, color

color_live, color color_dead) {
16 println(" making ca...");
17 this.x = x;

9

18 this.y = y;
19 this.cellsize = cellsize;
20 this.color_live = color_live;
21 this.color_dead = color_dead;
22
23 cells = new Cell[x][y];
24
25 initializeCells(density, hubdensity);
26 }
27
28 // initializes cells, randomly distributes live cells according to density
29 private void initializeCells(float density, float hubdensity) {
30 print(" initializing cells ");
31 for (int i = 0; i < x; i++) {
32 for (int j = 0; j < y; j++) {
33 print(".");
34 boolean hub = (random(1) <= hubdensity);
35 boolean live = (random(1) <= density);
36 cells[i][j] = new Cell(i, j, live, hub);
37 }
38 }
39 println();
40 assignNeighbors();
41 assignConnections();
42 }
43
44 // assigns all neighbors to a cell
45 private void assignNeighbors() {
46 print(" assigning neighbors ");
47 for (int i = 0; i < x; i++) {
48 for (int j = 0; j < y; j++) {
49 print(".");
50 assignNeighborToSingleCell(i, j, i-1, j-1);
51 assignNeighborToSingleCell(i, j, i, j-1);
52 assignNeighborToSingleCell(i, j, i+1, j-1);
53
54 assignNeighborToSingleCell(i, j, i-1, j);
55 assignNeighborToSingleCell(i, j, i+1, j);
56
57 assignNeighborToSingleCell(i, j, i-1, j+1);
58 assignNeighborToSingleCell(i, j, i, j+1);
59 assignNeighborToSingleCell(i, j, i+1, j+1);
60
61 }
62 }
63 println();
64 }
65
66 // assigns a number of unique bi-directional connections between cells

10

67 private void assignConnections() {
68 print(" assigning connections");
69 int nonhubconnections = 2;
70 int hubconnections = 10;
71
72 int numconnections;
73 for (int i = 0; i < x; i++) {
74 for (int j = 0; j < y; j++) {
75 print(".");
76 if (cells[i][j].isHub()) numconnections = hubconnections;
77 else numconnections = nonhubconnections;
78
79 int loopcount = 0;
80
81 while (cells[i][j].getConnections().size() < numconnections && loopcount <

1000) { // prevent infinite loops if impossible to find another unique
connection

82 loopcount++;
83
84 // pick random cell
85 int connx = int(random(x));
86 int conny = int(random(y));
87
88 // ensure that it can accept the connection as well
89 int targetconncount = cells[connx][conny].getConnections().size();
90 if ((cells[connx][conny].isHub() && targetconncount < hubconnections) ||

targetconncount < nonhubconnections) {
91 cells[i][j].addConnection(cells[connx][conny]);
92 cells[connx][conny].addConnection(cells[i][j]);
93 }
94 }
95 }
96 }
97 println();
98 }
99

100 // ensures that a neighbor is assigned torroidally
101 private void assignNeighborToSingleCell(int x, int y, int x2, int y2) {
102 if (x2 > this.x - 1) x2 = 0;
103 if (x2 < 0) x2 = this.x - 1;
104 if (y2 > this.y - 1) y2 = 0;
105 if (y2 < 0) y2 = this.y - 1;
106 cells[x][y].addNeighbor(cells[x2][y2]);
107 }
108
109 // iterates the entire system, one cell at a time.
110 public void iterate() {
111 for (int i = 0; i < x; i++) {
112 for (int j = 0; j < y; j++) {

11

113 cells[i][j].iterate();
114 }
115 }
116 }
117
118 // draws the CA to the screen
119 private void drawCA() {
120 // wipe screen
121 background(color_dead);
122
123 for (int i = 0; i < x; i++) {
124 for (int j = 0; j < y; j++) {
125 // find position
126 int posx = i * cellsize;
127 int posy = j * cellsize;
128
129 // select state color
130 if (cells[i][j].getState())
131 fill(color_live);
132 else
133 fill(color_dead);
134
135 // draw cell
136 rect(posx, posy, cellsize, cellsize);
137 }
138 }
139
140 drawConnections();
141 }
142
143 // draws the connections between the cells to the screen (ugly)
144 private void drawConnections() {
145 for (int i = 0; i < x; i++) {
146 for (int j = 0; j < y; j++) {
147 int hashcode = cells[i][j].hashCode();
148 color temp = color(red(hashcode),green(hashcode),blue(hashcode)); //

pseudo-unique colors (based on source cell)
149 fill(temp);
150 stroke(temp); // consistent colors per connection
151
152 int startx = i * cellsize + (cellsize/2);
153 int starty = j * cellsize + (cellsize/2);
154 ellipse(startx, starty, (cellsize/4), (cellsize/4));
155
156 for (Cell c : cells[i][j].getConnections()) {
157 if (c.getX() < i && c.getY() < j) continue; // prevent double drawing
158 int endx = c.getX() * cellsize + (cellsize/2);
159 int endy = c.getY() * cellsize + (cellsize/2);
160

12

161 line(startx, starty, endx, endy);
162 }
163 }
164 }
165 }
166
167 private void printStats() {
168 PrintWriter output = createWriter("stats.txt");
169 output.println("Stats for run (" + year() + "-" + month() + "-" + day() + " " +

hour() + ":" + minute() + ":" + second() + ")");
170 int maxnonhublifespan = 0;
171 int maxhublifespan = 0;
172
173 float avg_hublifespan = 0;
174 float avg_nonhublifespan = 0;
175
176 float hubcount = 0;
177 float nonhubcount = 0;
178
179 for (int i = 0; i < x; i++) {
180 for (int j = 0; j < y; j++) {
181 int current = cells[i][j].getCurrentLifespan();
182
183 cells[i][j].startNewLife();
184
185 int max_lifespan = 0;
186 float avg_lifespan = 0;
187 String memory = "";
188 String connections = "";
189 boolean is_hub = cells[i][j].isHub();
190
191 // longest lifespan + average lifespan
192 for (Integer k : cells[i][j].getLifespanHistory()) {
193 avg_lifespan += k;
194 if (k > max_lifespan) max_lifespan = k;
195 }
196 avg_lifespan /= (float)cells[i][j].getLifespanHistory().size();
197 if (cells[i][j].isHub()) {
198 if (max_lifespan > maxhublifespan) maxhublifespan = max_lifespan;
199 hubcount++;
200 avg_hublifespan += avg_lifespan;
201 } else {
202 if (max_lifespan > maxnonhublifespan) maxnonhublifespan = max_lifespan;
203 nonhubcount++;
204 avg_nonhublifespan += avg_lifespan;
205 }
206
207 // memory
208 for (Boolean b : cells[i][j].getMemory()) {

13

209 if (b) memory = memory + "1 ";
210 else memory = memory + "0 ";
211 }
212 memory = memory.trim();
213
214 // connections
215 for (Cell c : cells[i][j].getConnections())
216 connections = connections + "(" + c.getX() + "," + c.getY() + ") ";
217 connections = connections.trim();
218
219 output.println("Cell at (" + i + "," + j + "):");
220 output.println(" current lifespan: " + current);
221 output.println(" longest lifespan: " + max_lifespan);
222 output.println(" average lifespan: " + avg_lifespan);
223 output.println(" lifespan history: " + cells[i][j].getLifespanHistory());
224 output.println(" memory: " + memory);
225 output.println(" is hub: " + is_hub);
226 output.println(" connections: " + connections);
227 output.println("\n\n");
228
229 }
230 }
231 output.println("Average hub lifespan: " + (avg_hublifespan / hubcount));
232 output.println("Average non-hub lifespan: " + (avg_nonhublifespan / nonhubcount));
233 output.println("Maximum hub lifespan: " + maxhublifespan);
234 output.println("Maximum non-hub lifespan: " + maxnonhublifespan);
235
236 output.flush();
237 output.close();
238 }
239 }

14

